Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Genome Biol ; 25(1): 117, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715110

RESUMEN

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Asunto(s)
Preeclampsia , Trofoblastos , Remodelación Vascular , Preeclampsia/genética , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Remodelación Vascular/genética , Placenta/metabolismo , Metilación de ADN , Epigénesis Genética , Células Endoteliales/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Impresión Genómica , Factor de Crecimiento Transformador beta/metabolismo , Retardo del Crecimiento Fetal/genética , Placentación/genética , Proteínas de Unión al ARN , Proteínas Reguladoras de la Apoptosis
2.
Stem Cell Rev Rep ; 20(4): 996-1014, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457061

RESUMEN

The placenta stands out as a unique, transitory, and multifaceted organ, essential to the optimal growth and maturation of the fetus. Functioning as a vital nexus between the maternal and fetal circulatory systems, it oversees the critical exchange of nutrients and waste. This exchange is facilitated by placental cells, known as trophoblasts, which adeptly invade and remodel uterine blood vessels. Deviations in placental development underpin a slew of pregnancy complications, notably fetal growth restriction (FGR), preeclampsia (PE), recurrent spontaneous abortions (RSA), and preterm birth. Central to placental function and development is epigenetic regulation. Despite its importance, the intricate mechanisms by which epigenetics influence the placenta are not entirely elucidated. Recently, the scientific community has turned its focus to parsing out the epigenetic alterations during placental development, such as variations in promoter DNA methylation, genomic imprints, and shifts in non-coding RNA expression. By establishing correlations between epigenetic shifts in the placenta and pregnancy complications, researchers are unearthing invaluable insights into the biology and pathophysiology of these conditions. This review seeks to synthesize the latest findings on placental epigenetic regulation, spotlighting its crucial role in shaping fetal growth trajectories and development. Through this lens, we underscore the overarching significance of the placenta in the larger narrative of gestational health.


Asunto(s)
Epigénesis Genética , Placenta , Placentación , Resultado del Embarazo , Humanos , Embarazo , Femenino , Placentación/genética , Placenta/metabolismo , Resultado del Embarazo/genética , Metilación de ADN/genética , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Animales
3.
Int J Biol Macromol ; 263(Pt 1): 130220, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368983

RESUMEN

Human trophoblastic lineage development is intertwined with placental development and pregnancy outcomes, but the regulatory mechanisms underpinning this process remain inadequately understood. In this study, based on single-nuclei RNA sequencing (snRNA-seq) analysis of the human early maternal-fetal interface, we compared the gene expression pattern of trophoblast at different developmental stages. Our findings reveal a predominant upregulation of TBX3 during the transition from villous cytotrophoblast (VCT) to syncytiotrophoblast (SCT), but downregulation of TBX3 as VCT progresses into extravillous trophoblast cells (EVT). Immunofluorescence analysis verified the primary expression of TBX3 in SCT, partial expression in MKi67-positive VCT, and absence in HLA-G-positive EVT, consistent with our snRNA-seq results. Using immortalized trophoblastic cell lines (BeWo and HTR8/SVneo) and human primary trophoblast stem cells (hTSCs), we observed that TBX3 knockdown impedes SCT formation through RAS-MAPK signaling, while TBX3 overexpression disrupts the cytoskeleton structure of EVT and hinders EVT differentiation by suppressing FAK signaling. In conclusion, our study suggests that the spatiotemporal expression of TBX3 plays a critical role in regulating trophoblastic lineage development via distinct signaling pathways. This underscores TBX3 as a key determinant during hemochorial placental development.


Asunto(s)
Placenta , Placentación , Humanos , Embarazo , Femenino , Placenta/metabolismo , Placentación/genética , Primer Trimestre del Embarazo , Trofoblastos/metabolismo , ARN Nuclear Pequeño/metabolismo , Movimiento Celular , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
4.
Biol Reprod ; 110(3): 431-449, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38134961

RESUMEN

Long non-coding RNAs are cellular transcripts that have ˃200 nucleotides in length and do not code for proteins. Due to their low expression levels, long non-coding RNAs were previously considered as mere transcriptional noise. However, current evidence indicates that they regulate a myriad of biological processes such as cell proliferation, invasion, and apoptosis. Hence, their expression patterns are crucial indicators of the physiological or pathological states of cells, tissues, and organs. The utilization of long non-coding RNAs as biomarkers and therapeutic targets for the clinical management of several diseases have been suggested. Gradually, long non-coding RNAs are gaining a substantial attention in the field of feto-maternal medicine. After embryo implantation, the interactions between the trophoblast cells from the embryo and the uterus of the mother facilitate placenta development and pregnancy progression. These processes are tightly regulated, and their impairments result in pregnancy pathologies such as miscarriage and preeclampsia. Accumulating evidence implicates long non-coding RNAs in these processes. Herein, we have summarized the roles of several long non-coding RNAs in human placenta development, have proposed some mechanisms by which they participate in physiological and pathological placentation, have revealed some knowledge deficits, and have recommended ideal experimental approaches that will facilitate the clarification of the mechanistic actions of each long non-coding RNA at the feto-maternal interface during healthy and pathological pregnancies.


Asunto(s)
Placentación , ARN Largo no Codificante , Embarazo , Femenino , Humanos , Placentación/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Implantación del Embrión
5.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38112206

RESUMEN

Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade the uterus, where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome-editing techniques. In this investigation, we generated a conditional rat model targeting the invasive trophoblast cell lineage. Prolactin family 7, subfamily b, member 1 (Prl7b1) is uniquely and abundantly expressed in the rat invasive trophoblast cell lineage. Disruption of Prl7b1 did not adversely affect placental development. We demonstrated that the Prl7b1 locus could be effectively used to drive the expression of Cre recombinase in invasive trophoblast cells. Our rat model represents a new tool for investigating candidate genes contributing to the regulation of invasive trophoblast cells and their roles in trophoblast-guided uterine spiral artery remodeling.


Asunto(s)
Placenta , Placentación , Embarazo , Ratas , Femenino , Animales , Humanos , Placenta/metabolismo , Placentación/genética , Trofoblastos , Útero , Linaje de la Célula/genética , Modelos Animales
6.
Proc Natl Acad Sci U S A ; 120(51): e2311372120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085778

RESUMEN

The placenta serves as the interface between the mother and fetus, facilitating the exchange of gases and nutrients between their separate blood circulation systems. Trophoblasts in the placenta play a central role in this process. Our current understanding of mammalian trophoblast development relies largely on mouse models. However, given the diversification of mammalian placentas, findings from the mouse placenta cannot be readily extrapolated to other mammalian species, including humans. To fill this knowledge gap, we performed CRISPR knockout screening in human trophoblast stem cells (hTSCs). We targeted genes essential for mouse placental development and identified more than 100 genes as critical regulators in both human hTSCs and mouse placentas. Among them, we further characterized in detail two transcription factors, DLX3 and GCM1, and revealed their essential roles in hTSC differentiation. Moreover, a gene function-based comparison between human and mouse trophoblast subtypes suggests that their relationship may differ significantly from previous assumptions based on tissue localization or cellular function. Notably, our data reveal that hTSCs may not be analogous to mouse TSCs or the extraembryonic ectoderm (ExE) in which in vivo TSCs reside. Instead, hTSCs may be analogous to progenitor cells in the mouse ectoplacental cone and chorion. This finding is consistent with the absence of ExE-like structures during human placental development. Our data not only deepen our understanding of human trophoblast development but also facilitate cross-species comparison of mammalian placentas.


Asunto(s)
Placenta , Placentación , Humanos , Embarazo , Ratones , Femenino , Animales , Placentación/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Trofoblastos , Diferenciación Celular , Células Madre , Mamíferos
7.
Biomolecules ; 13(12)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38136553

RESUMEN

Viviparity is made possible by the placenta, a structure acquired relatively recently in the evolutionary history of eutherian mammals. Compared to oviparity, it increases the survival rate of the fetus, owing to the eutherian placenta. Questions such as "How was the placenta acquired?" and "Why is there diversity in placental morphology among mammalian species?" remain largely unsolved. Our present understanding of the molecules regulating placental development remains unclear, owing in no small part to the persistent obscurity surrounding the molecular mechanisms underlying placental acquisition. Numerous genes associated with the development of eutherian placental morphology likely evolved to function at the fetal-maternal interface in conjunction with those participating in embryogenesis. Therefore, identifying these genes, how they were acquired, and how they came to be expressed specifically at the fetal-maternal interface will shed light on some crucial molecular mechanisms underlying placental evolution. Exhaustive studies support the hypothesis that endogenous retroviruses (ERVs) could be evolutional driving forces for trophoblast cell fusion and placental structure in mammalian placentas including those of the bovine species. This review focuses on bovine ERVs (BERVs) and their expression and function in the placenta.


Asunto(s)
Retrovirus Endógenos , Placenta , Bovinos , Embarazo , Animales , Femenino , Placenta/metabolismo , Retrovirus Endógenos/genética , Placentación/genética , Trofoblastos , Mamíferos/genética , Euterios/genética
8.
J Integr Bioinform ; 20(4)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38127662

RESUMEN

During early pregnancy, extravillous trophoblasts (EVTs) play a crucial role in modifying the maternal uterine environment. Failures in EVT lineage formation and differentiation can lead to pregnancy complications such as preeclampsia, fetal growth restriction, and pregnancy loss. Despite recent advances, our knowledge on molecular and external factors that control and affect EVT development remains incomplete. Using trophoblast organoid in vitro models, we recently discovered that coordinated manipulation of the transforming growth factor beta (TGFß) signaling is essential for EVT development. To further investigate gene networks involved in EVT function and development, we performed weighted gene co-expression network analysis (WGCNA) on our RNA-Seq data. We identified 10 modules with a median module membership of over 0.8 and sizes ranging from 1005 (M1) to 72 (M27) network genes associated with TGFß activation status or in vitro culturing, the latter being indicative for yet undiscovered factors that shape the EVT phenotypes. Lastly, we hypothesized that certain therapeutic drugs might unintentionally interfere with placentation by affecting EVT-specific gene expression. We used the STRING database to map correlations and the Drug-Gene Interaction database to identify drug targets. Our comprehensive dataset of drug-gene interactions provides insights into potential risks associated with certain drugs in early gestation.


Asunto(s)
Redes Reguladoras de Genes , Placenta , Embarazo , Humanos , Femenino , Placenta/metabolismo , Trofoblastos/metabolismo , Placentación/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
9.
JCI Insight ; 8(21)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37815869

RESUMEN

CXCR4 is a key regulator of the development of NK cells and DCs, both of which play an important role in early placental development and immune tolerance at the maternal-fetal interface. However, the role of CXCR4 in pregnancy is not well understood. Our study demonstrates that adult-induced global genetic CXCR4 deletion, but not uterine-specific CXCR4 deletion, was associated with increased pregnancy resorptions and decreased litter size. CXCR4-deficient mice had decreased NK cells and increased granulocytes in the decidua, along with increased leukocyte numbers in peripheral blood. We found that CXCR4-deficient mice had abnormal decidual NK cell aggregates and NK cell infiltration into trophoblast areas beyond the giant cell layer. This was associated with low NK cell expression of granzyme B, a NK cell granule effector, indicative of NK cell dysfunction. Pregnancy failure in these mice was associated with abnormalities in placental vascular development and increased placental expression of inflammatory genes. Importantly, adoptive BM transfer of WT CXCR4+ BM cells into CXCR4-deficient mice rescued the reproductive deficits by normalizing NK cell function and mediating normal placental vascular development. Collectively, our study found an important role for maternal CXCR4 expression in immune cell function, placental development, and pregnancy maintenance.


Asunto(s)
Decidua , Placenta , Animales , Femenino , Ratones , Embarazo , Placentación/genética , Transducción de Señal/fisiología , Trofoblastos/metabolismo
10.
Biomolecules ; 13(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37892164

RESUMEN

Endogenous retroviruses (ERVs) are retrovirus-like sequences that were previously integrated into the host genome. Although most ERVs are inactivated by mutations, deletions, or epigenetic regulation, some remain transcriptionally active and impact host physiology. Several ERV-encoded proteins, such as Syncytins and Suppressyn, contribute to placenta acquisition, a crucial adaptation in mammals that protects the fetus from external threats and other risks while enabling the maternal supply of oxygen, nutrients, and antibodies. In primates, Syncytin-1 and Syncytin-2 facilitate cell-cell fusion for placental formation. Suppressyn is the first ERV-derived protein that inhibits cell fusion by binding to ASCT2, the receptor for Syncytin-1. Furthermore, Syncytin-2 likely inserted into the genome of the common ancestor of Anthropoidea, whereas Syncytin-1 and Suppressyn likely inserted into the ancestor of catarrhines; however, they were inactivated in some lineages, suggesting that multiple exaptation events had occurred. This review discusses the role of ERV-encoded proteins, particularly Syncytins and Suppressyn, in placental development and function, focusing on the integration of ERVs into the host genome and their contribution to the genetic mechanisms underlying placentogenesis. This review provides valuable insights into the molecular and genetic aspects of placentation, potentially shedding light on broader evolutionary and physiological processes in mammals.


Asunto(s)
Retrovirus Endógenos , Placenta , Animales , Embarazo , Femenino , Placenta/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Epigénesis Genética , Placentación/genética , Productos del Gen env/genética , Productos del Gen env/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
11.
Biol Reprod ; 109(6): 965-981, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37694817

RESUMEN

The placenta is a dynamic organ that must perform a remarkable variety of functions during its relatively short existence in order to support a developing fetus. These functions include nutrient delivery, gas exchange, waste removal, hormone production, and immune barrier protection. Proper placenta development and function are critical for healthy pregnancy outcomes, but the underlying genomic regulatory events that control this process remain largely unknown. We hypothesized that mapping sites of transcriptional enhancer activity and associated changes in gene expression across gestation in human placenta tissue would identify genomic loci and predicted transcription factor activity related to critical placenta functions. We used a suite of genomic assays [i.e., RNA-sequencing (RNA-seq), Precision run-on-sequencing (PRO-seq), and Chromatin immunoprecipitation-sequencing (ChIP-seq)] and computational pipelines to identify a set of >20 000 enhancers that are active at various time points in gestation. Changes in the activity of these enhancers correlate with changes in gene expression. In addition, some of these enhancers encode risk for adverse pregnancy outcomes. We further show that integrating enhancer activity, transcription factor motif analysis, and transcription factor expression can identify distinct sets of transcription factors predicted to be more active either in early pregnancy or at term. Knockdown of selected identified transcription factors in a trophoblast stem cell culture model altered the expression of key placental marker genes. These observations provide a framework for future mechanistic studies of individual enhancer-transcription factor-target gene interactions and have the potential to inform genetic risk prediction for adverse pregnancy outcomes.


Asunto(s)
Placenta , Placentación , Humanos , Femenino , Embarazo , Placentación/genética , Placenta/metabolismo , Elementos de Facilitación Genéticos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica
12.
Front Endocrinol (Lausanne) ; 14: 1205408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720526

RESUMEN

The maternal-fetal interface is defined as the interface between maternal tissue and sections of the fetus in close contact. RNA methylation modifications are the most frequent kind of RNA alterations. It is effective throughout both normal and pathological implantation and placentation during pregnancy. By influencing early embryo development, embryo implantation, endometrium receptivity, immune microenvironment, as well as some implantation and placentation-related disorders like miscarriage and preeclampsia, it is essential for the establishment of the maternal-fetal interface. Our review focuses on the role of dynamic RNA methylation at the maternal-fetal interface, which has received little attention thus far. It has given the mechanistic underpinnings for both normal and abnormal implantation and placentation and could eventually provide an entirely novel approach to treating related complications.


Asunto(s)
Implantación del Embrión , Placentación , Femenino , Embarazo , Humanos , Metilación , Placentación/genética , Implantación del Embrión/genética , Desarrollo Embrionario , ARN
13.
Nat Commun ; 14(1): 4826, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563143

RESUMEN

The extravillous trophoblast cell lineage is a key feature of placentation and successful pregnancy. Knowledge of transcriptional regulation driving extravillous trophoblast cell development is limited. Here, we map the transcriptome and epigenome landscape as well as chromatin interactions of human trophoblast stem cells and their transition into extravillous trophoblast cells. We show that integrating chromatin accessibility, long-range chromatin interactions, transcriptomic, and transcription factor binding motif enrichment enables identification of transcription factors and regulatory mechanisms critical for extravillous trophoblast cell development. We elucidate functional roles for TFAP2C, SNAI1, and EPAS1 in the regulation of extravillous trophoblast cell development. EPAS1 is identified as an upstream regulator of key extravillous trophoblast cell transcription factors, including ASCL2 and SNAI1 and together with its target genes, is linked to pregnancy loss and birth weight. Collectively, we reveal activation of a dynamic regulatory network and provide a framework for understanding extravillous trophoblast cell specification in trophoblast cell lineage development and human placentation.


Asunto(s)
Cromatina , Trofoblastos , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Placentación/genética , Diferenciación Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Linaje de la Célula/genética , Placenta/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
14.
Sci Rep ; 13(1): 10978, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414855

RESUMEN

Trophectoderm cells of the blastocyst are the precursor of the placenta that is comprised of trophoblast, endothelial and smooth muscle cells. Since trophoectoderm cells are epithelial in nature, epithelial mesenchymal transition (EMT) of trophoblast stem (TS) cells might play pivotal role in placental morphogenesis. However, the molecular regulation of EMT during placental development and trophoblast differentiation still remained elusive. In this report, we sought to identify the molecular signature that regulates EMT during placental development and TS cell differentiation in mice. On E7.5 onwards the TS cells, located in the ectoplacental cone (EPC), rapidly divide and differentiate leading to formation of placenta proper. Using a real time PCR based array of functional EMT transcriptome with RNA from mouse implantation sites (IS) on E7.5 and E9.5, it was observed that there was an overall reduction of EMT gene expression in the IS as gestation progressed from E7.5 to E9.5 albeit the levels of EMT gene expression were substantial on both days. Further validation of array results using real time PCR and western blot analysis showed significant decrease in EMT-associated genes that included (a) transcription factors (Snai2, Zeb1, Stat3 and Foxc2), (b) extracellular matrix and cell adhesion related genes (Bmp1, Itga5, Vcan and Col3A1), (c) migration and motility- associated genes (Vim, Msn and FN1) and (d) differentiation and development related genes (Wnt5b, Jag1 and Cleaved Notch-1) on E9.5. To understand whether EMT is an ongoing process during placentation, the EMT-associated signatures genes, prevalent on E 7.5 and 9.5, were analysed on E12.5, E14.5 and E17.5 of mouse placenta. Interestingly, expression of these EMT-signature proteins were significantly higher at E12.5 though substantial expressions was observed in placenta with progression of gestation from mid- to late. To evaluate whether TS cells have the potential to undergo EMT ex vivo, TS cells were subjected to EMT induction, which was confirmed using morphological analysis and marker gene expression. Induction of EMT in TS cells showed similar gene expression profile of placental EMT. These results have broad biological implications, as inadequate mesenchymal transition leading to improper trophoblast-vasculogenic mimicry leads to placental pathophysiology and pregnancy failure.


Asunto(s)
Placenta , Trofoblastos , Embarazo , Femenino , Animales , Ratones , Trofoblastos/metabolismo , Placenta/metabolismo , Transición Epitelial-Mesenquimal/genética , Placentación/genética , Diferenciación Celular/genética , Células Madre
16.
Arkh Patol ; 85(2): 13-20, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37053348

RESUMEN

BACKGROUND: The concern of the global community of gynecologists and obstetricians (FIGO) regarding the increase in the number of caesarean sections has resulted in the creation of a new classification, Placenta Accreta Spectrum (PAS), which presents degrees of villus invasion into the uterine wall. OBJECTIVE: Compare the main types of atypical placentation (AP) with the stages of PAS, to supplement and unify the clinical and morphological criteria AP. MATERIAL AND METHODS: Surgical material was examined from 73 women after metroplasty (n=61) and hysterectomies (n=12) from the regions of Russia, Moscow and the Moscow region for ingrown villi and from 10 women with a typical placenta location during the first cesarean section. A targeted cutting of material from the uteroplacental region was used, at least 10-12 pieces, with further H&E and Mallory staining. RESULTS: In the classification of AP, the terms «placenta accreta¼, «increta¼, «percreta¼ should be retained. It is necessary to single out pl. previa as a separate type. Attention is focused on the need to assess the depth of villi invasion accompanied by a layer of fibrinoid, the volume of scar tissue and the degree of disorganization of the myometrial bundles, the state of the vessels in the serous membrane. A new type of AP has been proposed - a sharp thinning of the lower segment of the uterus, due to the scar failure and the pressure of the growing amniotic sac, leading to atrophy and necrosis of the myometrium. CONCLUSION: An integrated approach should be used to classify atypical placentation, taking into account not only the depth of villus invasion, but also anatomical and pathogenic factors in order to develop targeted methods of surgical treatment.


Asunto(s)
Placenta Accreta , Placentación , Embarazo , Femenino , Humanos , Placentación/genética , Cesárea , Cicatriz/patología , Útero/patología , Placenta/patología , Placenta Accreta/patología , Estudios Retrospectivos , Ultrasonografía Prenatal
17.
Biol Reprod ; 108(5): 709-719, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36892411

RESUMEN

With the development of the embryo, the totipotent blastomere undergoes the first lineage decision to the inner cell mass (ICM) and the trophectoderm (TE). The ICM forms the fetus while the TE forms the placenta, which is one of the unique organs in mammals serving as the interface between maternal and fetal bloodstreams. Proper trophoblast lineage differentiation is crucial for correct placental and fetal development, including the TE progenitor self-renewal and its differentiation toward mononuclear cytotrophoblast, which later either develops into invasive extravillous trophoblast, remodeling the uterine vascular, or fuses into multinuclear syncytiotrophoblast, secreting pregnancy-sustaining hormone. Aberrant differentiation and gene expression of trophoblast lineage is associated with severe pregnancy disorders and fetal growth restriction. This review focuses on the early differentiation and key regulatory factors of trophoblast lineage, which have been poorly elucidated. Meanwhile, the recent development of trophoblast stem cells, trophectoderm stem cells, and blastoids derived from pluripotent stem cells bring the accessible model to investigate the profound mystery of embryo implantation and placentation and were also summarized.


Asunto(s)
Células Madre Pluripotentes , Trofoblastos , Animales , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Placentación/genética , Diferenciación Celular/genética , Expresión Génica , Mamíferos
18.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36607602

RESUMEN

Hemochorial placentation involves the differentiation of invasive trophoblast cells, specialized cells that possess the capacity to exit the placenta and invade into the uterus where they restructure the vasculature. Invasive trophoblast cells arise from a well-defined compartment within the placenta, referred to as the junctional zone in rat and the extravillous trophoblast cell column in human. In this study, we investigated roles for AKT1, a serine/threonine kinase, in placental development using a genome-edited/loss-of-function rat model. Disruption of AKT1 resulted in placental, fetal and postnatal growth restriction. Forkhead box O4 (Foxo4), which encodes a transcription factor and known AKT substrate, was abundantly expressed in the junctional zone and in invasive trophoblast cells of the rat placentation site. Foxo4 gene disruption using genome editing resulted in placentomegaly, including an enlarged junctional zone. AKT1 and FOXO4 regulate the expression of many of the same transcripts expressed by trophoblast cells, but in opposite directions. In summary, we have identified AKT1 and FOXO4 as part of a regulatory network that reciprocally controls critical indices of hemochorial placenta development.


Asunto(s)
Placenta , Placentación , Animales , Femenino , Embarazo , Ratas , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Placenta/metabolismo , Placentación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trofoblastos , Útero
19.
Life Sci Alliance ; 6(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36622342

RESUMEN

The placenta serves as a connection between the mother and the fetus during pregnancy, providing the fetus with oxygen, nutrients, and growth hormones. However, the regulatory mechanisms and dynamic gene interaction networks underlying early placental development are understudied. Here, we generated RNA-sequencing data from mouse fetal placenta at embryonic days 7.5, 8.5, and 9.5 to identify genes with timepoint-specific expression, then inferred gene interaction networks to analyze highly connected network modules. We determined that timepoint-specific gene network modules were associated with distinct developmental processes, and with similar expression profiles to specific human placental cell populations. From each module, we identified hub genes and their direct neighboring genes, which were predicted to govern placental functions. We confirmed that four novel candidate regulators identified through our analyses regulate cell migration in the HTR-8/SVneo cell line. Overall, we predicted several novel regulators of placental development expressed in specific placental cell types using network analysis of bulk RNA-sequencing data. Our findings and analysis approaches will be valuable for future studies investigating the transcriptional landscape of early development.


Asunto(s)
Placenta , Transcriptoma , Animales , Femenino , Ratones , Embarazo , Redes Reguladoras de Genes/genética , Placenta/metabolismo , Placentación/genética , ARN/metabolismo , Transcriptoma/genética
20.
Proc Natl Acad Sci U S A ; 120(3): e2213622120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626551

RESUMEN

Establishment of the hemochorial uterine-placental interface requires exodus of trophoblast cells from the placenta and their transformative actions on the uterus, which represent processes critical for a successful pregnancy, but are poorly understood. We examined the involvement of CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) in rat and human trophoblast cell development. The rat and human exhibit deep hemochorial placentation. CITED2 was distinctively expressed in the junctional zone (JZ) and invasive trophoblast cells of the rat. Homozygous Cited2 gene deletion resulted in placental and fetal growth restriction. Small Cited2 null placentas were characterized by disruptions in the JZ, delays in intrauterine trophoblast cell invasion, and compromised plasticity. In the human placentation site, CITED2 was uniquely expressed in the extravillous trophoblast (EVT) cell column and importantly contributed to the development of the EVT cell lineage. We conclude that CITED2 is a conserved regulator of deep hemochorial placentation.


Asunto(s)
Placenta , Placentación , Proteínas Represoras , Transactivadores , Animales , Femenino , Humanos , Embarazo , Ratas , Placentación/genética , Proteínas Represoras/genética , Transactivadores/genética , Trofoblastos , Útero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...